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Techniques of bifurcation theory are used to  study the porous-medium analogue of the 
classical Rayleigh-Be'nard problem : Lapwood convection in a two-dimensional 
saturated porous cavity heated from below. Two particular aspects of the problem are 
focused upon: (i) the existence of multiple steady solutions and (ii) the influence of 
aspect ratio. 

Convection begins only when the applied temperature difference (say) exceeds a 
critical value defined by linear stability theory. The resulting convective flow pattern 
depends both on the magnitude of the temperature difference and on the aspect 
ratio of the cavity. A weakly nonlinear analysis reveals the roles played by so-called 
secondary bifurcations in determining the formation of further, anomalous patterns 
a t  fixed aspect ratio. In  addition to giving rise to alternative stable flows for identical 
operating conditions, the secondary bifurcations are required for the modal 
exchanges which take place as the aspect ratio varies, a process which causes an 
abrupt change in preferred flow pattern at certain critical values of the aspect ratio. 

As a complement to  and an extension of the weakly nonlinear analysis, numerical 
methods are used to determine the bifurcation processes and to elucidate the modal 
exchange mechanisms in both weakly and strongly convective flows. The effect of 
container size is studied by continuation methods to predict the variation of the 
critical Rayleigh number of the bifurcation points for aspect ratios in the range 0.5 
to 2.0. In this way a stability map is obtained which shows the alternative patterns 
expected for particular operating conditions. The Nusselt number is computed and 
it is found that the alternative stable modes transfer significantly different amounts 
of heat through the medium. 

The study has provided new information on the existence and characteristics of, 
and interactions between, alternative steady modes of two-dimensional Lapwood 
convection. The results have important ramifications for the modelling and design of 
physical systems in which convective flow in a saturated porous medium is stimulated 
by an imposed unstable temperature gradient. 

1. Introduction 
Convective flows in porous media are of interest in many varied practical 

situations : in geothermal energy resource and oil-reservoir modelling, in mass 
transfer through snow layers and the genesis of avalanches, in open-pore insulation 
systems and in gas flows through tobacco rods, to  name but a few. These sorts of 
applications, together with the fact that  the study of porous-media flows is a 
fundamental scientific problem, have motivated a rapidly increasing number of 
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FIGURE 1 .  Map showing how the horizontal wavevector (m,n) of the most linearly unstable 
disturbance depends on the aspect ratios h,, h, of an untilted rectangular cell. The vertical 
wavenurnber for these modes is unity. (After Beck 1972.) 

investigations in the last decade. A recent survey of the literature on free-convective 
flows in porous media may be found in the excellent review by Bories (1985). 

The present study is concerned with the bifurcation structure associated with 
steady free convection in a finite two-dimensional saturated porous cavity heated 
from below. The aim of this study is to identify stable regimes and to describe the 
interchange processes which take place when the aspect ratio varies. 

Beck (1972) seems to have been the first to consider convection in a finite three- 
dimensional horizontal box of porous material saturated with fluid and heated from 
below. Using linear stability analysis, he found the critical Rayleigh number for the 
onset of convection in a box of aspect ratios h,, h, (ratio of horizontal dimensions to 
vertical height). The results are summarized in two celebrated figures, one of which 
is reproduced in figure 1.  This shows the horizontal wavevector of the preferred 
cellular mode (m, n)  as a function of h,, h,. In  the present two-dimensional study we 
are effectively restricting ourselves to thin three-dimensional boxes with length 
greater than or equal to the height. For three-dimensional boxes, numerical solutions 
based on the Galerkin method have been reported by Straus & Schubert (1978, 1979, 
1981), Schubert & Straus (1979) and Caltagirone, Meyer & Mojtabi (1981), and based 
on finite-difference methods by Holst & Aziz (1972) and Horne (1979). 

Straus & Schubert (1978) studied the stability of two-dimensional solutions to 
cross-roll disturbances and delineated the dimensions of those boxes for which the 
motion is necessarily unsteady or steady and three-dimensional. For example, they 
found that steady, unicellular, two-dimensional convection cannot exist when the 
Itayleigh number equals 200 if the ratio of the cylinder length to  the dimension of the 
square vertical cross-section lies between 0.38 and 0.61. Straus &, Schubert (1979) 
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showed that in cubic boxes the flow may be non-unique in that they found two- and 
three-dimensional steady solutions coexisting for Rayleigh numbers larger than 
4.57~~.  This feature was also found by Holst & Aziz (1972) and Horne (1979), who in 
fact found the co-existence of four solutions : two- and three-dimensional, steady and 
unsteady. Their solutions also failed to offer support to the Malkus proposition that 
the flow should evolve to a steady configuration which maximizes the heat transfer : 
for Ra < 97 the two-dimensional flow maximizes heat transfer while for R a  > 97 it  is 
the three-dimensional flow. Schubert & Straus (1979) studied the onset of oscillations 
in two- and three-dimensional, multi-cellular convection in square cavities and 
cubes, respectively. They found that two-dimensional, unicellular flow becomes 
time-dependent for R a  > 300, but noted that the two-dimensional flows may not be 
realizable in a three-dimensional box owing to perturbations in the orthogonal 
direction. Generally the transition occurs at Rayleigh numbers that are in 
approximate proportion to  the number of cells. Straus & Schubert (1981) 
demonstrated the non-uniqueness of steady, three-dimensional convection in 
rectangular boxes with square horizontal cross-section. Caltagirone et al. (1981) 
enumerated various stable structures for different Rayleigh numbers and aspect 
ratios. 

By using an analytical eigenfunction-expansion technique and studying the phase- 
space dynamics of finite-amplitude disturbances. Steen (1983) has been able to  
compute the probabilities that  certain flow patterns will be realized in near-cubic 
boxes when the system is subjected to random perturbations. He also showed that 
stable three-dimensional motion in a cube is only possible when R a  > 4.877~’. Steen 
(1985) used the same techniques to consider the effect of container geometry on the 
transition to unsteady convection. Borkowska-Pawlak & Kordylewski (1985), 
seemingly unaware of the work of Steen, used a very similar attack in their study of 
flows near the triple bifurcation point at R a  = 4.57~~ for a box of square horizontal 
cross-section and aspect ratio = 24. 

To summarize the numerical work : the situation is extremely complex and i t  is not 
yet possible to describe fully the multiplicity and stability of the flows that occur, 
neither is it possible to assign probabilities to the occurrence of flows that have been 
found. It is known that in cubic boxes the flow is non-unique - it may be two- or 
three-dimensional, steady or unsteady. The actual flow that is realized in a general 
box depends critically upon the Rayleigh number and the aspect ratios of the box. 
By considering thin boxes the flow may be assumed to be steady and two- 
dimensional, a t  least for low enough Rayleigh number. Steady two-dimensional flow 
may exist in other cases, but it is known that certain configurations cannot support 
it. 

The major conclusions are supported by experimental work. Bories, Combarnous 
& Jaffrennou (1972) using an experimental cell 46.3 x 66 x 5.05 em high observed 
three-dimensional polyhedral cells, whilst Caltagirone, Cloupeau & Combarnous 
(1971) observed fluctuating two-dimensional rolls in a cell 38 ern long, 2 cm wide and 
4 4  em deep. The transition to permanently unsteady motion in the form of two- 
dimensional rolls was originally found by Combarnous & LeFur (1969) using a cell 
37 x 60 x 5.5 em high. Horne & O’Sullivan (1974) found non-uniqueness in the 
observed two-dimensional motion inside a Hele-Shaw cell. 

The number of numerical investigations into two-dimensional, large amplitude 
convection is also substantial and we shall not attempt an exhaustive survey. Straus 
(1974) using a Galerkin technique calculated a balloon-shaped region of Rayleigh 
number-wavenumber space in which stable solutions exist. Horne & O’Sullivan 
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(1974) showed the non-uniqueness of the flows in a square cell. Caltagirone (1975) 
investigated the effect of aspect ratio and also the transition to unsteadiness ; this 
investigation covered the Rayleigh number range 10-2000 and the aspect ratio 
(widt'h to height) range 0.1-4. Borkowska-Pawlak & Kordylewski (1982) used a 
truncated Galerkin method to study the transition to oscillatory convection in an 
infinite layer. They also studied the effect of finite Prandtl-Darcy number. 

In  independent studies, Aidun & Steen (1987) and Kimura, Schubert & Straus 
(1987) calculated the transition to oscillatory convection in unicellular flow in two- 
dimensional square cavities. They found that there exists a Hopf bifurcation at a 
Rayleigh number of about 390 with a corresponding frequency of about 83 cycles per 
diffusion time. These calculations are believed to  improve on the earlier estimate of 
the transitional Rayleigh number of 384f5 found by Caltagirone (1975). 

It should be emphasized that there is a close analogy between the present porous- 
medium case and the pure-fluid case which is generally known as the Rayleigh- 
B6nard problem. There is not a complete equivalence because they possess 
different symmetry properties. They share Z ,  x Z, symmetry, but the porous- 
medium problem possesses in addition a translational invariance so that a two-cell 
solution in a cavity of aspect ratio 2 is equivalent to a four-cell solution in a cavity 
of aspect ratio 4, and so on. This translational invariance arises from the slip 
boundary conditions which apply a t  the boundaries of the porous medium. In 
contrast, the no-slip conditions which are appropriate to a pure fluid confined in a 
cavity destroy the translational invariance. 

In terms of simplicity and cost, the present case provides an attractive and viable 
test-bed for analytical and numerical studies, and the insight gained into the 
qualitative features of porous-media convection is an invaluable aid to our 
understanding of the Rayleigh-Be'nard problem. From an experimental viewpoint 
the Rayleigh-Be'nard problem does have an advantage in that it is relatively easy to 
build and operate a Rayleigh-Be'nard cell of variable aspect ratio, whereas the 
porous-media cavities must be repacked in each case. 

The numerical techniques that we adopt in this study originate in bifurcation 
theory, where they have been used mainly for locating singular points in algebraic 
equations and ordinary differential equations. The basic idea is to extend the set of 
governing equations with conditions that are satisfied a t  the bifurcation point to be 
located. By combining this extended-systems approach with the finite-element 
approximation, partial differential equations can readily be treated. The approach 
has been applied with considerable success in the following related studies: flow 
between concentric rotating cylinders (the Taylor problem) by Cliffe (1983, 1988) ; 
buoyancy-driven convection in a fluid heated from below (the Rayleigh-BQnard 
problem) by Jackson & Winters (1984). The effects of tilt were examined by Cliffe & 
Winters (1984) and by Winters & Brown (1985) for two- and three-dimensional 
cavities rcspcctively; flow in a curved tube (the Dean problem) by Winters & 
Brindley (1984) and Winters (1987 b )  ; surface-tension-driven convection in a fluid 
heated from below (the Marangoni problem) by Winters, Plesser & Cliffe (1988) ; onset 
of vortex shedding in flow past bluff bodies by Jackson (1987) ; onset of oscillatory 
convection in a semiconductor crystal melt and a double-glazing cavity by Winters 
(1987 a,c) ; ignition and extinction in a reaction-diffusion system describing thermal 
cxplosions by Winters & Cliffe (1985). Some of the above applications to problems 
in fluid mechanics and heat transfer are summarized by Winters, Cliffe & Jackson 
(1984, 1987). 

The extended systems of equations will be described later, but in anticipation of 
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their explicit forms we note that we shall be solving basically a linear stability 
problem to locate the singular points. However, there are several important 
differences between our approach and more traditional linear stability and weakly 
nonlinear analyses. First, by solving the extended systems in a finite-element 
formulation we are able to locate bifurcations in finite regions of arbitrary shape 
and with arbitrary boundary conditions. Secondly, the idea of solving the basic 
governing equations simultaneously with conditions satisfied a t  the singular point 
establishes a framework for systematically identifying and computing different types 
of singular points of increasing codimension (Jepson & Spence 1984). Finally, with 
continuation methods we can follow nonlinear branches which arise at the singular 
points, we can trace out paths of bifurcation points and we can detect the presence 
of further bifurcations. 

The combination of the extended systems approach with the finite-element 
approximation gives the present method great generality, allowing the possibility of 
locating instabilities in more complex configurations, such as the non-planar cases 
considered by Rees & Riley (1986, 1989a,b). We note that it is natural in the finite- 
element method to use a direct solver and this makes available the Jacobian matrix <; this is particular appropriate for bifurcation studies where the Jacobian can be 
used for parameter continuation (Keller 1977) and for assessing stability. 

The plan of the rest of the paper is as follows : in 3 2 the approximations underlying 
the problem are discussed and the governing equations are formulated. In $3  
analytical and theoretical results are discussed. Linear stability results are first 
presented and there follows a weakly nonlinear analysis of the modal interaction near 
the first double eigenvalue at  Ra = 4 . 5 ~ ' .  The expected state diagram is discussed 
and the effect of varying the aspect ratio is considered. There is then a discussion of 
the symmetries that the equations possess, and the relationship between the present 
problem and a Taylor-Couette problem is highlighted. Finally the unfolding with 
aspect ratio of the double eigenvalue, which arises when the neutral stability curves 
of the two-cell and six-cell Taylor flows intersect, is outlined. In  $4 the equations are 
cast in a form suitable for numerical solution by the finite-element method. Then we 
describe the numerical techniques used for locating bifurcation points in the 
equations and for parameter continuation of the solutions to these equations. In  $5 
numerical results are presented. Finally in $6 the findings are summarized. 

2. Formulation 
2.1. Approximations 

( a )  The solid matrix is homogeneous, non-deformable and chemically inert with 

( b )  The fluid is single phase and Newtonian and under the usual averaging over a 

(c )  The Prandtl-Darcy number is large so that the inertia terms may be neglected. 
(d )  The solid and fluid phases are in thermal equilibrium (in certain cases the lack 

of agreement between theory and experiment has been attributed to the non-validity 
of this assumption and models have been proposed which include interphase heat 
transfer coefficients). 

( e )  The relative temperature differences are small enough for the Boussinesq 
approximation to hold. 

(f) Thermal dissipation is negligible and an effective (scalar) thermal conductivity 
may be assumed. 

respect to the fluid. 

representative elementary volume the linear Darcy law results. 
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FIGURE 2. The geometry and coordinate system for the  two-dimensional roctangrilar cavity. 

2.2. Problem description 
We consider a two-dimensional rectangular cavity of height H and aspect ratio 
h = W / H ,  where W is the lateral dimension (width). The cavity (see figure 2) comprises 
a solid matrix of porosity E’, permeability K and heat capacity (pc),, saturated by 
a fluid with thermai expansion coeficient /3, of viscosity v and heat capacity (pc),. 
The saturated porous medium is taken to  have an effective thermal conductivity k, 
and heat capacity (pc)* where 

(PC)* = € ’ ( P C ) f +  ( 1  --E’)(PC),. (2.1) 
The lateral boundaries of the cavity are adiabatic, while the upper and lower 

boundaries are at isothermal temperatures To -3AT, To +$A, respectively ; AT is 
taken to be positive so that the cavity is heated from below. All boundaries are 
assumed impermeable. 

On invoking the Boussinesq approximation, and assuming that the Prandtl-Darcy 
number is large, convective flows are governed by the dimensionless equations : 

where (x, y) are Cartesian coordinates based a t  the centre of the cavity, 

and 3, 0 are stream and temperature functions, respectively. Here Ra denotes the 
Darcy-Rayleigh number defined by 

(2.4) 

and quantities have been non-dimensionalised using lengthscales H or W (as 
appropriate), diffusive velocity scale k,/H(pc), and the temperature scale AT. 
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The governing equations (2.2), (2.3) hold in the region 

SZ = { ( x ,  y): -0.5 < x < 0.5, -0.5 < y < 0.5}, 

while on the boundaries we have 

33 1 

(2.5) 

3. Theoretical considerations 
3.1. Lapwood convection 

A linear stability analysis of the pure conduction base state, carried out by Sutton 
(1970) (who also considered the effect of an imposed weak uniform horizontal flow 
t,hrough the’cavity), found that eigenmodes exist when the Rayleigh number satisfies 

x2 

m2h2 Ram,, = - (n2h2 +m2)2. 

These perturbation eigenmodes represent flows with m horizontal cells and n vertical 
cells and are given by 

(3.2) !Pm,n = sin (mnz) sin (nng), 

cos (mnz) sin (nxfj), 1 
Rah,, 

ern,, = -- (3.3) 

where z = x+0.5 and y = y+0.5 .  Aplot of the linear stability curve (3.1) for various 
(m,n)-modes is shown in figure 3. The minimum critical Rayleigh number for the 
(m, n)-mode occurs a t  aspect ratio h = m / n  and is equal to 4n2n2. We note that the 
lowest critical Rayleigh number for each (m, n)-mode is independent of m. This is a 
direct consequence of the slip condition on the sidewalls. The same behaviour is 
found for the Rayleigh-Be‘nard problem with slip sidewalls, whilst a no-slip condition 
results in a value of the lowest critical Rayleigh number which varies with the mode. 
We note further that, whatever the aspect ratio, the mode of lowest critical Rayleigh 
number always has unit vertical wavenumber, while the corresponding horizontal 
wavenumber is dependent on the aspect ratio. The wavenumber of this mode changes 
from (m, 1) to (m+ 1,l) a t  an aspect ratio and Rayleigh number given by 

n2( 2m + 1)s 
h = [m(m+ l)]i, Ra = 

m(m+i) ’ 
and more generally the (m, 1) and (m’, 1)  modes interchange when 

n2(m + m’)2 
mm’ ’ 

h = (mm’);, Ra = 

(3.4a) 

(3.46) 

3.2. Secondary bifurcations : analysis near the first double eigenvalue 
As the aspect ratio increases through one of the critical values given by (3.4a),there 
is an exchange between primary modes, with the mode of lowest critical Rayleigh 
number changing from (m, 1)  to (m+ 1 , l )  ; in general we shall refer to bifurcations 
from the trivial branch as primary bifurcations. This type of exchange has been 
discussed in a general qualitative way by Schaeffer (1980) : i t  is now well understood 
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FIGURE 3. The variation of critieal Rayleigh number with aspect ratio for the lower modes in 
Lapwood convection. 

(see Shearer 1980) that this exchange process between solutions both of which possess 
Z ,  symmetry is often associated with secondary bifurcations (that is bifurcations 
from a primary branch) which transfer from one modal solution branch to the other 
as the exchange takes place. The qualitative picture of the Schaeffer nine-solution 
branch mechanism is illustrated in figure 4. Basically the secondary bifurcations 
are required to satisfy constraints on the Lcray-Schauder degree of the  solution 
branches, whilst ensuring that the degrees are consistent as Ra+ co. In an earlier 
paper Bauer, Keller & Reiss (1975) discussed examples involving multiple 
eigenvalues and showed that weakly nonlinear theory may be applied to analyse the 
local structure as the exchange takes place. The theory was subsequently employed 
by Kidachi (1982) to investigate the primary mode interchange in the 
Rayleigh-Be'nard problem with idealized slip boundary conditions on the sidewalls ; 
Mctzcner (1986) extended this work to the no-slip case. Here, in order to check our 
numerical results and to investigate the nature of the secondary bifurcations, we 
employ weakly nonlinear theory to  investigate the interaction between the (1,l) and 
( 2 , l )  primapy modes. The expected paths of bifurcation points in the (h,Ra)-plane 
are illustrated schematically for this case in figure 5. We are concerned with the 
solution near to  the double eigenvalue Ra = Ra,  = 4 . 5 ~ ~  which occurs when h = 4 2  
and we are thus led to seek solutions to (2.2) and (2.3) subject to (2.6) and (2.7) in 
the form 

( 3 . 5 )  

(3.6) 

(3-7) 

(3.8) 
with A = sign(h- 4 2 )  and whcrc ~ t ,  8, are functions of x, y and the slow timescale 
7 = s2t. 

$h = €?+bO+€2$b,+ ..., 
e = - - y + c ~ o + a , +  ..., 

Ru=Ma,(l+e2R,+ ...), 

h =  d 2 ( 1 + + 2 A +  ...), 
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FIGURE 4. Schematic illustration of the role of secondary bifurcations in the primary-mode 
exchange that  occurs as the aspect ratio increases. 

Proceeding in the standard fashion and omitting all detail we find that 

( @ O >  60) = A(7)(!l7,IJ @,,,)+B(7) ( F 2 , 1 >  % , I ) >  (3.9) 
where A ( 7 ) ,  R(T)  are the amplitudes of the (1 , l )  and ( 2 , l )  modes respectively. 
Applying solvability conditions to the O(s3)-equations yields the evolution 
equations for the amplitudes : 

- = &7PA(dl-A2-C1R%), (3.10) 
dA 
d7 

(3.11) 

with C, = 5 ,  C, = i, d, = 8{3R, - A}, d, = 4{3R, +A}. (3.12) 

The equations possess three solutions which do not depend upon the interaction of 
the ( 1 , l )  and ( 2 , l )  modes; these are 

(i)  A = B = 0 (trivial mode), ( 3 . 1 3 ~ )  

(ii) B = 0, A 2  = d, ,  d ,  > 0 (pure ( 1 , l )  mode), (3.13 b)  

(iii) A = 0, B2 = d,, d, > 0 (pure ( 2 , l )  mode). (3.13~) 

- _  ClB - 1  X7.c 2 B{d,  -c*A* -B2}, 
a7 
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FIGURE 5 .  Schematic illustration of the expected variation of the critical Rayleigh numbers of 
the primary (full curves) and secondary bifurcations (broken curves) with aspect ratio. 

The amplitude of the disturbance is zero for Ra < min (Ra,, Ra,], where 

Ra, = 1.5x2(1 + 4 2 h ) ,  Ra, = 1.5n2(5- 4 2 h ) ,  

but bifurcates a t  Ha, and Ra,. These bifurcated solutions suffer secondary bifur- 
cations because of the presence of mixed-mode solutions in which neither A nor 
B is zero. These solutions are given by 

(3.13d) 

It is a straightforward matter to determine the stability of the various solutions to 
small disturbances and we omit the detail. 

The results of the above analysis are summarized in figures 6. In  figure 6(a)  we 
present a perspective view of the situation that obtains when h < 4 2 .  We see that 
the ( 1 , l )  mode, given by (3.13b), bifurcates from the trivial solution at  Ra = Ra,; 
this primary branch is stable. At Ra = Ra, there is a further primary bifurcation to 
the ( 2 , l )  mode given by ( 3 . 1 3 ~ )  and this mode undergoes secondary bifurcation a t  
Ra = Ra,, where 

Ra, = 0.5n2(23-72/2h). 

The ( 2 , l )  mode is unstable for Ra < Ra, but is stabilized by the secondary 
bifurcation. As h --f 2/2, (Ra,, Ra,) + Ra, and the first and second primary branches 
approach each other, with the range of Rayleigh number for which the second 
primary is unstable diminishing. At h = 4 2 ,  all the bifurcation points coincide with 
the pure modes completely stable and the mixed modes unstable (figure 6 b ) .  As h 
increases further the branches separate again with the ( 2 , l )  mode becoming the 
leading primary and with the mixed mode now bifurcating off the ( 1 , l )  mode. This 
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FIGURE 6. Variation with Rayleigh number of the amplitudes of the ( 1 , i )  and ( 2 , l )  modes ( A  and 
B respectively). End-on views along the Ra-axis are shown t o  the right. Stable/unstable branches 
are denoted by full/dashed curves respectively. (a) h < 1 / 2 ,  ( b )  h = 2 / 2 ,  (c )  h > 4 2 .  

situation is shown in figure 6 (c) : the ( 2 , l )  mode bifurcates a t  R a  = Ra,, the ( 1 , l )  mode 
at Ra = Ra,. The secondary bifurcation now occurs a t  Ra = Ra,, where 

Ra, = 0.5~~(111/2h-13) ,  

leaving the primary mode stable as before. 
I n  figure 6 we also display the ‘end-on’ view along the length of the Rayleigh 

number axis in order to clarify the shape of the secondary bifurcation branches. Note 
that the secondary branches actually continue out to infinity but are truncated in the 
figures. 

3.3 Symmetries 
It is straightforward to show that the governing system of steady equations possesses 
Z ,  x Z ,  symmetry, where the generators of the group are S,, S ,  defined by 

(3.14) 

(3.15) 
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The representation F of the group Z ,  x Z ,  is r = {I ,Sx,Su,SrS,) ,  where I is the 
identity operator. Here S,, S, and S,S, represent left-right, up-down and centro- 
symmetries, respectively. 

There exists a solution representing a pure conduction state, viz. B = -y, @ = 0, 
for all Ra, and the bifurcations from this trivial solution will have distinct symmetry 
properties depending on the number of horizontal cells m and vertical cells n. A 
bifurcation to  an odd number of cells in direction i (i = x or y) breaks the symmetry 
Si, whilst if Im-nl is odd then the centro-symmetry S,S, is broken. Table 1 
illustrates the combinations that' arise in practice. 

In addition to these symmetries the slip condition (2.6) implies a translational 
invariance. The simplest description of this invariance is obtained by embedding the 
physical cell in an infinite, periodic array of cells in the x-direction. Then the (m,  n)-  
mode possesses translational symmetries TZ, where p = 1,2,  . . . , m - 1 and 

(3.16) 

This symmetry has an important consequence for the crossing of paths of bifurcation 
points (which was alluded to in $3.1). The point at which two paths cross is a double 
eigenvalue and normally a double eigenvalue in a problem with Z ,  x Z ,  symmetry is 
not structurally stable if each path breaks the same symmetry (Cliffe & Winters 
1986). In  fact structural stability only occurs for a special value of a further 
parameter; the double eigenvalue is a codimension-1 singularity. In  contrast, if the 
paths break different symmetries then they will always cross. I n  Lapwood convection, 
the translational symmetry arising from the slip condition guarantees that all paths 
will cross. 

The ( 1 , l )  and ( 2 , l )  modes both have Z ,  symmetry with group generators S,S, and 
S,, respectively. Thus their exchange is governed by the Shaeffer nine-solution- 
branch model, which is illustrated qualitatively by figure 4. For h - 1,  the one-cell 
( 1 , l )  primary mode, which being an odd-cell mode breaks the S, and S, symmetries, 
bifurcates first. Then a t  higher Rayleigh number the two-cell ( 2 , l )  mode, which 
breaks the S, and S,S, symmetries bifurcates. As the aspect ratio increases these 
primary branches swap over and, as described in $3.2, the exchange of primary 
modes is accompanied by a transfer of a secondary bifurcation. The secondary 
bifurcation from the two-cell branch at h - 1 breaks the 8, symmetry, but a t  larger 
h the secondary bifurcation from the one-cell branch breaks the centro-symmetry. 
This is possible only because all symmetries have been broken. 

The exchange of the (1,l) and ( 3 , l )  modes, however, is more complicated. The 
modes both have 2, symmetry, but with the same group generator S,S,; thus the 
Schaeffer model does not apply. I n  fact, the one-cell mode is invariant with respect 
to {I,SZfJy] and the three-cell with respect to  { I ,  S,Sy, 7",, I:). Thus the modes 
possess effectively the same symmetry groups found by Tavener &, Cliffe (1988) 
for the two-cell/six-cell interchange in the Taylor-Couette flow problem with 
impermeable, strcss-free end-cap conditions. 

3.4. The Taylor-Couette two-cell six-cell interchange model 
The flow considered by Tavener & Cliffe is that of an incompressible, viscous fluid 
between two concentric cylinders, with the inner one rotating and the outer one fixed. 
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R 

FIQURE 7 .  Loci of singular points in the Taylor-Couette problem. Here r and R denote 
respectively the aspect ratio and rotation Reynolds number. 

The length of the cylinders is finite and the end caps are assumed to be impermeable 
and stress free. In this Taylor problem cellular flows bifurcate from a trivial Couette 
flow solution. Using symmetry arguments and numerical bifurcation techniques 
Tavener & Cliffe analysed the modal cxchanges which take place between two-, four- 
and six-cell flows as the length of the cylinder increases with the gap width fixed (or, 
more generally, as the aspect ratio changes). 

In terms of the underlying symmetries, i t  is the two- six-cell interchange which 
corresponds to the one- three-cell interchange in the porous-medium problem 
considered in this paper. The results concerning the two- six-cell interchange are 
summarized in figures 7 and 8. I n  figure 7, the neutral stability curves along which 
the Couette flow loses stability with respect to  two-cell and six-cell flows are labelled 
QHB and EHI,  respectively. The loss of stability in each case is associated with a loss 
of translational invariance and occurs a t  a pitchfork bifurcation point, which is 
supercritical in the neighbourhood of the modal exchange. Secondary bifurcation on 
the six-cell branches occurs along the locus of transcritical bifurcation points SH in 
figure 7 ; this bifurcation is also associated with a loss of translational invariance and 
is subspace breaking. The associated locus of limit points, RH, lies close to SH. At 
a critical length, the branches arising from the secondary bifurcation points on the 
six-cell branches become connected to the two-cell branches at the transcritical 
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bifurcation point T. Two paths of limit points result when this transcritical 
bifurcation disconnects in the opposite sense. The locus of limit points on the 
continuous branch connecting two- and six-cell flows is labelled TH. The limit points 
indicating the lower stability limit of a pair of disconnected two-cell flows are labelled 
TU . 

In figure 8(a)  the two-cell flows bifurcate from the trivial solution at  a lower 
Reynolds number than the six-cell flows. The branches are lettered according to the 
direction of flow at the end caps : a/n denotes the flow which is inwardly/outwardly 
spiralling at the ends. At a critical length, figure 8 ( b ) ,  the branches arising at 
secondary transcritical bifurcations on the six-cell branches connect with the two-cell 
flow branches, such that the branches a and n cross. The transcritical bifurcations T 
and the limit points RH occur on either side of the secondary bifurcations SH. As the 
length increases further, the transcritical bifurcations T disconnect, producing a 
continuous, folded branch connecting the two-cell and six-cell flows, as shown in 
figure 8 ( c ) .  The limit points RH and TH, the secondary bifurcation points SH and 
the primary bifurcation points QH and EH coalesce a t  the double singular point H, 
figure S(d) .  As the length increases further, the primary bifurcation points QH and 
EH emerge from the double singular point H in the opposite order as HB and HI, 
and the branches swap stability, figure 8(e) .  

4. Numerical methods 
4.1. Finite-element equations 

The equations (2.2) and (2.3) are discretized in the finite-element approximation 
using a standard Galerkin formulation with the second-order terms integrated by 
parts. This leads to the following form: 

In the above equations : Q is the spatial region being discretized ; r is the boundary 
of 8; I'' is the part of r with no specified value for +; 4 is the part of r with no 
specified value for 6 ;  f+ is a test function for the variable $ which is zero on r-r+; 
f0 is a test function for the variable 6' which is zero on r-&; n is the outward normal 
at  the boundary, 

In locating non-trivial bifurcations which break the reflectional symmetries the 
numerical techniques make use of an unfolding parameter which itself breaks those 
symmetries. Physically, the most natural way of breaking these symmetries is by 
tilting the cavity so that the isothermal surfaces are no longer perpendicular to the 
gravity vector. We adopt this method here and introduce the parameter 9, the angle 
of inclination of the hot surface to the horizontal (measured in a clockwise sense). 
This formulation also accommodates the study of convection in a tilted rectangular 
cavity, see Riley & Winters (1986,1987), which is itself important. 

The integration by parts gives a boundary integral for each equation over that 
part of r for which a specified value is not set for the corresponding variable. The 
integrand consists of a normal flux and the boundary integral contributes only when 
this flux is non-zero. For the present boundary conditions (2.6) and (2.7) all boundary 
integrals are zero. 
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I n  our finite-element approximation of these weak equations we expand the 
stream function and temperature in quadratic functions based on nine-noded 
quadrilateral elements. A Galerkin formulation is adopted in which the test functions 
fk and fo are chosen from the same set of quadratic basis functions. The resulting 
integrals of products of quadratic functions are evaluated numerically by Gauss 
quadrature. The nonlinear algebraic equations for the unknown nodal values of 
stream function and temperature are linearized using a Newton-Raphson procedure, 
and the solution of the linear set of equations a t  each iteration is obtained using a 
direct, frontal solver. 

4.2. Bifurcation algorithms 
We write the set of nonlinear algebraic equations which result from the finite-element 
discretization of (4.1) and (4.2) as 

ax 
M - + f ( x , h , ~ ) = O  at ( ~ € 4 ,  (4.3) 

where f is a smooth nonlinear function, M is a linear operator on X (Rn in this case, 
where n is the number of degrees of freedom in the discretization), h is a bifurcation 
parameter, and a is a vector of control parameters. We distinguish the bifurcation 
parameter h from the control parameters a because we seek the change of behaviour 
as this particular parameter is varied. 

In the present problem we are concerned only with steady-state solutions of (4.3), 
that is solutions x which satisify : 

(4.4) 

and we wish to locate the critical values of h a t  which bifurcations in the solutions 
occur. Here, the bifurcation parameter is the Rayleigh number Ra and the control 
parameters are the aspect ratio h and the tilt q5. Our first objective will be to locate 
these bifurcations in an untilted cavity for fixed values of the control parameter h. 
Having located a singular point we shall then obtain the variation of the critical 
bifurcation parameter Ra as h varies. In  this way a path of bifurcation points is 
traced out, and this path may itself have a singular point that we wish to locate. 

To understand how we are able to obtain information on possible bifurcations and 
instabilities from the steady-state equations, we consider the linear stability of a 
steady solution x, of equation (4.4) with respect to  a small perturbation x,. The 
behaviour of the perturbation x, is governed to lowest order by the linear equation 

f (x ,  A, a) = 0, 

ax 
at M'+f,(x,,h,a)x, = 0.  (4.5) 

Now let x be a generalized eigenvector of fi(x, ,A,a) with eigenvalue c such that 

Then if the perturbation x, is along x it behaves as 

xl(t) = ee-RfX, (4.7) 

where e is the component of x, along x at t = 0. The steady solution xo is linearly 
stable if all the generalized eigenvalues CT have Re (c) > 0 ;  all small perturbations 
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will decay until the steady state is restored. We note that since c is real the 
eigenvalues in (4.6) are either real or else occur in complex-conjugate pairs. 

As the bifurcation parameter h varies, the linear stability of the steady solution xo 
changes when one or more eigenvalues in (4.6) cross the imaginary axis. Thus there 
is a critical value of h for which cr = 0 and J: is singular ; this critical value is called 
a singular or bifurcation point of equation (4.4). We know from the implicit function 
theorem that the uniqueness of the steady solution xo cannot be guaranteed when the 
Jacobian J: becomes singular and this usually (but not necessarily) marks the 
appearance of multiple steady-state solutions. 

We note that if a generalized eigenvalue becomes purely imaginary, that is u = f iw, 
then (4.4) has a Hopf bifurcation which gives rise to periodic solutions of angular 
frequency w a t  a critical value of A, although the Jacobian J: is not actually singular 
at that point. The existence of Hopf bifurcations in the present problem will be 
studied in a future paper. 

4.2.1. Stability of solution branches 
From the above discussion it might appear that the stability of solution branches 

can be deduced only from a computation of the full eigenvalue spectrum of c. 
Fortunately, limited information on stability can be inferred from the Jacobian 
determinant: since this is the product of the eigenvalues then its sign must equal 
( - l)n, where n is the number of negative, unstable eigenvalues. Thus, a negative sign 
indicates that the branch is unstable since there is a t  least one negative eigenvalue, 
but a positive sign does not imply stability since there might be an even number of 
unstable eigenvalues. The sign of the Jacobian determinant is also useful for 
detecting bifurcation points along a solution branch whilst varying the bifurcation 
parameter A, since the sign will in general change when a singular point is passed. 

4.2.2, Extended systems 
The general procedure we adopt for locating bifurcation points of equation (4.4) is 

to solve the equation simultaneously with conditions satisfied at the bifurcation. One 
condition which must always hold, by definition, is that  the Jacobian matrix is 
singular so that i t  has at least one zero eigenvalue. Additional conditions may hold 
depending on the type of bifurcation which is to be located and these conditions can 
be derived from singularity theory (Golubitsky & Schaeffer 1985). The resulting 
extended system of equations is solved by Newton’s method to give both the 
solution a t  the bifurcation point and the value of the bifurcation parameter. This 
approach is described in detail in Jepson & Spence (1984). 

The different types of bifurcations which occur in the present problem are: 
primary bifurcations which are symmetry-breaking bifurcation points from a trivial 
solution ; secondary bifurcations which may be either symmetry-breaking bifurcation 
points or transcritical bifurcations from a non-trivial solution ; limit points arising 
from the unfolding of both primary and secondary bifurcations. 

4.2.3. Primary bifurcations from the trivial branch 
I n  the present problem the majority of primary bifurcations are of a special type of 

symmetry-breaking bifurcation in which the branching occurs from a trivial 
solution, namely the conducting, no-flow state which exists for all values of the 
Rayleigh number. We define a trivial solution of equation (4.4) to  be a solution that 
is independent of h and denote it x,: We locate bifurcations from xo by computing 
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the eigenvectors 5 of the Jacobian matrix <(x , ,h ,a )  which have a simple zero 
eigenvalue, that is we solve 

<(x,, A ,  4 5 = 0 (4.8) 

Z(5)-1 = 0, (4.9) 
where (4.9) defines a normalization for the right eigenvector 6 .  

approximated by 
The branch of solutions bifurcating away from the singular point (x,, A,, a )  may be 

(4.10) x = X,+E5,+ ..., 
h = A,+$&+ ...) (4.11) 

where S is defined by a complex expression given by Winters et al. (1988). 
The above expressions reflect the fact that  the primary bifurcations are pitchfork 

in shape. They will be either sub-or super-critical according to whether 6 is negative 
or positive. 

In order to compute the solution on any nonlinear branch which bifurcates from 
the trivial solution we use (4.10) and (4.11) to construct an initial guess at the new 
value of A ;  Newton’s method will then converge quadratically to  the solution on the 
branch for sufficiently small (h-A,). The branch is then followed for varying h by 
standard continuation techniques (see $4.2.6). 

4.2.4. Secondary bifurcations 
The secondary bifurcations are singular points on solution branches which 

themselves have arisen a t  primary bifurcations. I n  the present problem they are 
either symmetry-breaking or subspace-breaking bifurcations and by definition they 
always branch from a non-trivial solution. 

Considering first the bifurcations that are subspace breaking, these will be 
transcritical since this is the general form of a bifurcation which docs not break any 
symmetry. To locate a transcritical bifurcation we use the extended system proposed 
by Moore & Spence (1980) for locating limit points: 

f ( x , h , a ) = O ,  f , ( x , A , a ) < = O ,  l ( { ) - i = O ,  (4.12) 

and we solve this together with the additional condition (Jepson & Spence 1984) 

t i fA(X, A ,  4 = 0, (4.13) 

where q is the left eigenvector of the Jacobian matrix. This algorithm locates the 
critical values of two parameters a t  which there is a transcritical bifurcation in the 
steady equations (4.4). The first of these parameters is the bifurcation parameter h 
and the second can be any one of the control parameters a provided that the effect 
of varying that parameter is to  unfold the bifurcation. This second parameter is the 
tilt $ for subspace-breaking bifurcations. 

Turning next to the secondary bifurcations which are symmetry breaking, we have 
seen in $ 3  that two main types are expected: (i)  a secondary bifurcation from a 
branch which will break the remaining reflection symmetry S,; (ii) a secondary 
bifurcation from a branch which will break the remaining centro-symmetry 8, S,. 
Since the reflection symmetry is lost when the cavity is tilted, the first type can be 
computed as a transcritical bifurcation with $ as the unfolding parameter, as 
discussed above. The location of the second type is problematic since centro- 
symmetry is not lost when the cavity is tilted so that the bifurcation is not unfolded 
by varying 4. We overcome this by introducing a perturbation into (2.2) and (2.3) 
which breaks the centro-symmetry and let the amplitude of this perturbation be the 
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unfolding parameter in applying the extended system for the transcritical 
bifurcation. 

4.2.5. Limit points 
A limit point (often called a turning point or a one-sided bifurcation point) arises 

in the present problem during the ( 3 , l )  and ( 1 , l )  modal exchange. We located limit 
points using the extended system (4.12) of Moore & Spence (1980) described above. 

4.2.6. Continuation 
Euler-Newton continuation is an effective means of following a particular solution 

branch. In its simplest form the solution x, obtained a t  A = A,, and its derivative 
ax,/aA. are used to predict the solution x, a t  a new value A,, from 

ax 
x, = x o + ~ ( A , - h 0 ) .  

ah (4.14) 

The Pu’ewton-Raphson iterations converge rapidly at  each value of A ,  for a suitable 
step size (&-A,) ,  but this procedure ultimately fails a t  a limit point in the solution 
curve, where the Jacobian matrix is singular. 

In practice, we used a better method which introduces a pseudo-arclength 
parameter, s, to parametrize the solution (Keller 1977). For continuation in A = A(s)  
we solve the extended system 

f ( x , A , a )  = 0, N(x,A,s) = 0, (4.15) 

where (4.16) 

With Euler-Newton continuation in s rather than A ,  i t  is possible to follow the 
solution around a limit point, since the Jacobian matrix of system (4.15) and (4.16) 
is non-singular. The presence of a symmetry-breaking bifurcation point or limit point 
is determined by monitoring the Jacobian determinant, which changes sign as the 
singular point is passed. 

Paths of singular points were traced by applying continuation in h or q5 to the 
appropriate extended system, augmented in the manner of equation (4.15). 

5. Computations 
All computations were carried out on the CRAY-1S and CRAY-XMP at Harwell 

using the finite-element code ENTWIFE. Our aim in this study was t o  resolve the 
bifurcation structure. To this end we carried out grid-independence and accuracy 
checks on certain critical values; see table 2, for example. We endeavoured to ensure 
that we did not introduce spurious bifurcation through the use of too coarse a grid, 
but we did not perform grid-independence checks on the predicted flows at  the 
highest Rayleigh numbers considered. 

5.1. The state diagram and jlows at h = 1 
Figure 9 shows the computed bifurcation structure when h = 1 and for Rayleigh 
numbers up to 100. The measure used in all computed state diagrams is the left-hand 
midwall temperature and, in accord with standard practice, the solid and dashed 
lines indicate stable and unstable branches respectively. The secondary bifurcations 
which stabilize the two-cell mode occur a t  a Rayleigh number of 81.01. As a result, 
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Critical Rayleigh number 
Mode 
(%n) Analytical Eumerical Grid 
( 1 , l )  4n2 ( =  39.478) 39.481 8 x 8  

39.518 4 x 4  
(2 , l )  vz2 (= 61.685) 61.736 8 x 8  

61.432 4 x 4  

( 3 , l )  y n 2  ( =  109.66) 110.15 8 x 8  
(2,2) 16n2 ( =  157.91) 158.07 8 x 8  
(4,l)  ena (=  178.27) 180.79 8 x 8  

TABLE 2 

FIGURE 9. Computed bifurcation structure at  unit aspect ratio. A plus sign denotes that all the 
eigenvalues of the Jacobian matrix are positive. If negative eigenvalues exist then their number is 
indicated by the number of negative signs on the branch. The measure used is the temperature at  
(-0.5,O.O). The insets show the streamlines (left) and isotherms (right) at  Ra = 100. The contour 
levels are equally spaced between the maximum and minimum values of the stream function and 
temperature. 

for Rayleigh numbers in excess of this critical value both stable one-cell and two-cell 
modes exist. In theory either mode may be observed, but the one-cell mode will be 
preferred and the two-cell mode will be anomalous under conditions where the 
Rayleigh number is raised by gradually increasing the applied temperature 
difference. Information regarding the eigenvalues of the Jacobian matrix is given 
along the various solution branches : a plus sign indicates that all the eigenvalues are 
positive and so the branch is stable. If negative eigenvalues exist then their number 
is indicated by the number of negative signs on the branch-these branches are 
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Rayleigh number 

FIGURE 10. Computed bifurcation structure at h = 1 showing higher modes. Stable/unstable 
branches are denoted by full/broken curves respectively. 

unstable. Aa and Ca denote the two primary bifurcation points and Ma the secondary 
bifurcation point. 

The streamlines and isotherms are also displayed in figure 9 for the various modes 
when Ra = 100 ; these visualizations graphically confirm the statements concerning 
symmetry made in $3.3. We note that, as expected, the full solution set possesses the 
symmetries of the basic problem. 

A rather fuller state diagram is given in figure 10 for Rayleigh numbers up to 350 
and includes the primary bifurcations to the three-cell mode ( 3 , l )  at cb. The three- 
cell solution branches have two secondary bifurcations at  Rb and UV. These are 
necessary for the exchange of the primary ( 3 , l )  mode with each of the two primary 
modes bifurcating at lower Rayleigh number. The bifurcation at  Rb is subspace 
breaking and transcritical, whereas that at UV is centro-symmetry breaking and 
pitchfork. We note that the crossing at cb of the branches arising at the secondary 
bifurcations Ma is a consequence of the measure chosen ; there are no bifurcations on 
these secondary branches at this point. 

For clarity we have not shown in figure 10 the primary bifurcations located at  
Rayleigh number greater than 160, nor the secondary bifurcations associated with 
them, nor any tertiary bifurcations (we define a tertiary bifurcation to be a singular 
point on a branch that arises at a secondary bifurcation). Moreover, a primary 
bifurcation to a (2,2) mode occurs a t  Ra = 16x2 but the branch has zero measure and 
overlays the abscissa. A symmetry-breaking secondary bifurcation from this (2 ,2)  
mode occurs at  ce and the bifurcating branch connects with the secondary 
bifurcation at Rb on the ( 3 , l )  branch. 

To clarify this connectivity of the (3 , l )  and (2,2) solution branches, the schema of 
figure 11 represents the (2,2) mode with non-zero measure. The supercritical 
branches arising at each of the transcritical points Rb on the (3, I )  primary branch 
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-- 
FIGURE 1 1 .  Schema of the detailed structure of the state diagram focusing on the ( 3 , l )  and 

(2,2) modes. 

loop round to form a pitchfork bifurcation a t  ce on just one of the ( 2 , 2 )  primary 
branches. This asymmetry is unexpected but is consistent w.ith the nature of the 
( 2 , 2 )  primary bifurcation which is not 2, x Z,-symmetry breaking. We note that the 
bifurcation a t  ce is supercritical and the limit points between Rb and ce are a 
consequence of this. A further unexpected feature is the presence of centro- 
symmetry-breaking tertiary bifurcations at TO and Xe. These tertiary bifurcations 
are required for the modal exchange of secondary bifurcations. We further indicate 
on figure 11 two symmetrically disposed subcritical bifurcations a t  Yd on each of the 
( 2 , 2 )  branches. 

With regard to  figure 11, it is interesting to  consider how the flow changes at 
various points along the branch arising a t  the subspace-breaking bifurcation from 
the ( 3 , l )  mode, up to where the same branch emerges from the symmetry-breaking 
bifurcation from the (2,Z) mode. The streamlines and isotherms at various points 
along the branch are visualized in figure 12. By comparing I1 and I11 we see the effect 
of subspace breaking: the solution I1 is invariant under and q, the solution I11 
is not, and both solutions are centro-symmetric. I n  progressing along the branch to 
IV the outer two cells increase in strength and break up the weaker middle cell into 
two; these two vortices then grow in strength to form the symmetrical ( 2 , Z )  mode 
seen at  V. Thus'the bifurcation a t  V breaks the reflection symmetries S,  and S,, as 
it must do in order to  preserve the centro-symmetry S,S,. 

From the examples of isotherm distributions shown so far it is clear that the 
variation in the temperature gradient a t  the horizontal surface, and therefore in the 
local heat flux, depends strongly on the flow mode. I t  is interesting to enquire 
whether the average heat transfer for each mode is as disparate. We have computed 
the average Nusselt number defined by 

along each of the branches shown in the state diagram of figure 10. The results are 
displayed in figure 13 and the significantly different heat transfer characteristics of 
the various stable modes are clearly apparent. This behaviour highlights most 
tellingly the practical need to establish the existence of multiple stable solutions and 
to assess the likelihood of stimulating each of them in particular circumstances. 
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FIGURE 12. Flow development along the secondary branch connecting the 
(3 , l ) -  and (2,2)-solution branches. 

5.2. The d a l  exchange processes 
The one- and two-cell flows exchange priority at  h = 2/2; the development of the 
state diagrams as h increases through this critical value has been described in $3.2 
and is not repeated here. The computed variation with h of the primary bifurcations 
to the ( 1 , l )  and ( 2 , l )  modes, in the neighbourhood of their intersection, is shown in 
figure 14 as curves AaB and CaD respectively. Secondary bifurcation off the two-cell 
branch occurs along Ma and off the one-cell branch along aN. It is interesting to note 
that figure 14 contains more information than is at first apparent. For as confirmed 
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aN-+ 
b o d -  - - TG- 

349 

FIGURE 15. Schema of state diagrams for (1,1)/(3,1) interchange in the Lapwood problem. 
(a) h < 4 3 ,  (b)  h = 4 3 ,  (c )  h > 4 3 .  

by the weakly nonlinear analysis we know that the second primary mode is stabilized 
by the secondary bifurcation. Thus a t  fixed aspect ratio, the second primary (i,e. the 
one with the higher critical Rayleigh number) is stable for Rayleigh numbers larger 
than the Rayleigh number a t  which the secondary bifurcation occurs. In  other 
words, both primary modes are stable for Rayleigh numbers above the curve MaN 
in figure 14, one of these modes a t  a given h being preferred and the other being 
anomalous as described in 85.1. 

Consider now the one- and three-cell flows, which exchange priority a t  an aspect 
ratio of d3. The qualitative development of the state diagrams as h increases 
through this critical value is illustrated in figure 15. For h < 4 3  the unstable one- 
cell flows bifurcate from the trivial solution at ab, a t  a lower Rayleigh number than 
the unstable three-cell flows bifurcating at Eb, as sketched in 15(a). Both these 
bifurcations are supercritical, pitchfork, and they are associated with the breaking of 
reflectional symmetries S, and S,. Secondary bifurcation occurs a t  aN on the one-cell 
branch leaving it stable a t  higher Rayleigh number. The secondary bifurcations 

12-2 



350 D. S.  Riley and K .  H .  Winters 

loo F R T  
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FIGURE 16. Computed loci of singular points near (1 ,1) / (3 ,1)  neutral curve intersection in the 
Lapwood problem. 

break the centro-symmetry S,S, and are therefore pitchfork. In  contrast the 
secondary bifurcations which occur on the three-cell branch at Rb are transcritical ; 
the solutions on the bifurcating branches break out of the subspace which is 
invariant under the action of I ,  and 3 but retain centro-symmetry as discussed 
in $5.1. These branches undergo further bifurcation a t  the tertiary points TO; these 
break the remaining centro-symmetry S, S, and are therefore pitchfork. Finally, 
further secondary bifurcations on the three-cell branch a t  UV stabilize the three-cell 
flows a t  higher Rayleigh number. We note that for 4 2  < h < 4 3  both the one- and 
three-cell stable flows are anomalous and the two-cell flows are preferred, the ( 2 , l )  
mode having the lowest critical Rayleigh number in this range. 

As h approaches 4 3  the bifurcation points ab, Eb  and Rb approach each other 
until they coincide a t  the modal exchange point b, as shown in figure 15(b). 
Concomitantly, the limit point Sb associated with the transcritical bifurcations 
approaches Rb so that the secondary bifurcation becomes pitchfork a t  the point of 
exchange. As h increases from 4 3 ,  the multiple bifurcation structure of figure 15(b) 
unfolds to form the new structure sketched in figure 15 ( c ) .  This unfolding creates new 
mixed-mod6 primary branches arising a t  the limit points bO. These mixed-mode 
branches are made up of branches which, for h < 4 3 ,  corresponded to primary one- 
cell and secondary three-cell solutions. Along the mixed-mode branches there are 
secondary bifurcations a t  aN, which stabilize the primary flow for large Rayleigh 
numbers, and at TO, which was a tertiary bifurcation before the unfolding. The 
unfolding also creates new primary one-cell branches from those which, for h < 4 3 ,  
corresponded to secondary three-cell branches bifurcating from Rb through Sb (see 
figure 15a). The primary three-cell branches arising at E b  for h < 4 3  and bF for 
h > 4 3  lose the secondary bifurcation Rb during the exchange but are otherwise 
unaffected. 

The schematic development of the state diagram of figure 15 was deduced from the 
computed variations with h of the primary and secondary bifurcation points which 
are presented in figure 16. The neutral stability curves for the primary one- and 
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three-cell branches are labelled abB and EbF respectively, and the modal exchange 
takes place at  b. The lowest secondary bifurcation of the three-cell branch occurs 
along the path of transcritical points Rb. The associated path of limit points Sb lies 
very close to Rb and at the multiple bifurcation point b the transcritical and limit 
points coincide and the bifurcations become pitchfork. The other path of singular 
points involved in the modal exchange is labelled bOP and corresponds to  the limit 
point on the disconnected branches drawn in figure 15 ( c ) .  Clearly, as anticipated in 
$3.3, the exchange of the ( 1 , l )  and ( 3 , l )  modes is not described by the Schaeffer 
model. In  fact, it is similar to and somewhat less complex than the interchange 
between two- and six-cell modes in the Taylor-Couette problem considered by 
Tavener & Cliffe (1988). I n  both cases the subspace breaking of the three-cell 
secondary bifurcation would seem to determine the special nature of the modal 
exchange. This subspace breaking is possible owing to the and Q translational 
invariance of the ( 3 , l )  mode resulting from the slip conditions on the boundaries. 

We have also included in figure 16 the (1,1)/(2,1) modal exchange that we have 
already discussed, because the path of one-cell secondary bifurcations aN which 
emerges from the point of exchange labelled a interacts unexpectedly with the path 
of limit points bOP emerging from the point of exchange b of the ( 1 , l )  and ( 3 , l )  
modes. Specifically, the path of secondary bifurcation points aN turns back at N and 
becomes the path of bifurcation points NOT, with 0 being a point of osculation of 
the curves NOT and bOP. Further, a path of limit points NQ emerges from the path 
of bifurcation points aNO at N. This complex interaction takes place for aspect ratios 
1.88 < h < 1.96 and the paths of critical points in this range are shown in figure 
17(a). This can be interpreted with reference to the development of the state 
diagrams for increasing h shown in figure 17 (b ) .  We first recall from figure 15 that as 
a result of the (3 ,1) / (1 ,1)  exchange the secondary bifurcation aN lies, for h > 4 3 ,  on 
one of the branches originating from the limit point bO -the secondary bifurcation 
TO lies on the other one. This is represented in the first state diagram of figure 17 ( b ) .  
As h increases, the point TO moves around the limit point bO and is then labelled 
ON, and this features on figure 17 (a) near the osculation point of the path TON with 
bOP, i.e. at the double-singular point 0. As h increases further the supercritical 
bifurcation ON develops quartic contact a t  point N (or very close to N ; we have not 
attempted to numerically resolve the difference since the global stability map would 
not change). At N the bifurcations ON and aN coalesce and the two secondary 
branches disconnect in the opposite sense giving mixed-mode branches. The overall 
effect of this complex behaviour is to  trace out a path aNOP above which a one-cell 
mode is stable. We note that the occurrence of a coalescence/quartic point N and 
double-singular point 0 in close proximity suggests that this structure results from 
the unfolding of a codimension-2 singularity as described by Jepson, Spence & Cliffe 
(1987). 

An implication of the presence of the double-singular point is the possible 
generation of Hopf bifurcations. Although these do not necessarily arise a t  double 
singular points, figure 17 ( b )  shows that they are expected in the present case in order 
to preserve the Leray-Schauder degree on the branches, for increasing h. The 
locating of such Hopf points is beyond the scope of the present study but for 
completeness we have included a conjectured path 0 1 in figure 17 ( a )  and we note two 
points: (a )  we expect the Hopf bifurcations to stabilize a part of the branches on 
which they lie; ( b )  the Hopf bifurcations will have infinite period at  0 and so complex 
dynamical behaviour, possibly chaotic, may be expected in the neighbourhood of 0. 

We show in figure 18 the paths of all the singular points that we have computed. 
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FIOCRE 17. (a )  The loci of the singular points on the disconnected mixed one-/three-cell branch 
with conjectured path of Hopf points. (b )  The corresponding evolution of the state diagram as the 
aspect ratio increases. 

In addition to  the modal exchanges discussed so far, this figure includes five more, 
namely the exchange of the (2,2) mode with the (3, I ) ,  ( 4 , l )  and (1,2) modes, and the 
exchange of the ( 1 , 2 )  mode with the ( 3 , l )  and (4 , l )  modes. We have not attempted 
to compute all the secondary bifurcations needed to elucidate the exchange 
mechanisms, except in the case of the (2,2)/(3,1) exchange which we describe below, 
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FIQURE 18. The full plot of computed loci of singular points. 

and incompletely in the case of the (2,2)/(4,1) exchange where we see that the 
subcritical bifurcation Yd on the (2,2) branch (see figure 11) originates a t  the point 
of exchange d. Figure 18 also includes the modal exchange of the secondary 
bifurcations CZ and Yd at e and we see that the tertiary bifurcation Xe appearing in 
figure 11 is involved in this exchange. In discussing the (3,1)/(1,1) exchanges we 
have seen how the nature of the symmetries preserved by the odd-cell solutions 
induces a special mechanism for the exchange which is different to the Schaeffer 
model. Similarly we expect that the (3,1)/(2,2) exchange will differ from the 
Schaeffer model and this is confirmed by the unusual linkage of these two modes at 
h = 1 illustrated in figure 11.  

We show in figure 19(a) the computed paths of singular points in the 
neighbourhood of the exchange. Eb and Id are the paths of primary bifurcation 
points to the (3 , i )  and (2,2) modes respectively which intersect at c. Three paths of 
secondary bifurcations are involved in the exchange. For h > (3/5)4 the (2,2) mode 
undergoes secondary bifurcation on just one of its two branches along the line ce, as 
illustrated in figure 19(b).  As h decreases through its critical value this single 
bifurcation passes onto the other branch emanating from the primary (2,2) 
bifurcation to trace out the path Wc. The transcritical secondary bifurcations on the 
( 3 , l )  branches trace out the path cR and become pitchfork at c where they coincide. 
From figure 19(b) we see that the effect of this exchange is to ‘unravel’ for h < (3/5); 
the linkage found for h > (3/5)$. 

We turn finally to the practical import of the results we have presented. In figure 
18 we showed a complete picture of the paths of computed singular points in 
(Ra, h) parameter space. Most of those paths are unphysical in the sense that they 
represent bifurcations on an unstable branch which leave the branch unstable. The 
physically important paths, fewer in number, are those that stabilize branches and 
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FIGURE 19. ( a )  The computed loci of singular points near (2: 2)/(3,1) neutral curve intersection. 

(b )  Schema showing the evolution of the state diagram as the aspect ratio increases. 

it might appear that these are the only ones with which we should be concerned. 
However, an important conclusion of our study is that the behaviour of the 
‘physical ’ bifurcations is intimately connected with that of the ‘ unphysical ’ ones, 
and that a complete understanding can be arrived at only by considering them all. 
As an illustration of this point, we show in figure 20 the domain of existence of the 
various alternative stable flows in (Ra, h)-space, obtained by suppressing the paths 
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FIGURE 20. Stability map showing the domains of the alternative physical flows. 

of ‘unphysical ’ bifurcations. This clearly shows the complicated shape of the 
stability boundary for one-cell flows and we recall that this results from the complex 
interactions between paths of singular points, both physical and unphysical, 
described in figure 16. 

6. Conclusions 
Analytical and numerical techniques were used to study Lapwood convection in a 

two-dimensional saturated porous cavity. For a cavity of fixed aspect ratio, a simple 
analytical linear stability study shows that a countably infinite set of eigenmodes 
exists. These eigenmodes occur a t  discrete eigenvalues and represent convective 
flows with m and n rolls in the horizontal and vertical directions, respectively. The 
preferred mode of convection (the one with the lowest critical Rayleigh number) 
always has one cell in the vertical direction: the number of cells in the horizontal 
direction depends upon the aspect ratio. 

A comprehensive state diagram for a cavity of unit aspect ratio was computed and 
shown to have an unexpectedly complex structure. For low enough Rayleigh 
number, the preferred mode is always stable, the domain of stability being limited by 
the occurrence of Hopf bifurcations at higher Rayleigh numbers. Secondary 
bifurcations stabilize other primary solution branches and give rise to the possibility 
of anomalous modes of convection. The flow and temperature fields associated with 
the solution branches were visualized. 

As the aspect ratio increases, modal exchanges take place in which secondary and 
even tertiary bifurcations play a necessary r81e. By using a synthesis of degree 
theory, symmetry arguments and continuation methods, the exchange processes 
were elucidated. Detailed results were obtained for the (1,1)/(2,1) and (1,1)/(3,1) 
exchanges and a stability map for these three modes was determined for aspect ratios 
between 1 and 2. This stability map shows the domains of the alternative physical 
flows and illustrates most clearly their non-unique nature. 

The study also revealed a complex asymmetrical connectivity between the ( 3 , i )  
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and (2,2) modes; this fcature is believed to arise because of the underlying 
symmetries of the modes and is being studied further. Although the (2 ,2)  mode is 
unphysical in the sense that it is always unstable, it is the (2,2)/(3,1) exchange which 
gives rise to  a secondary bifurcation that stabilizes a one-cell branch. This illustrates 
well the need to study bifurcations to both stable and unstable flows, in order to 
determine stability boundaries. 

In  summary, the results of this study of Lapwood convection provide important 
information on : how anomalous patterns form ; how many anomalous patterns are 
expected for given operating conditions; how the heat transfer depends on the 
anomalous patterns ; how the preferred and anomalous modes change with varying 
container size. 

It is a pleasure to thank K. A. Cliffe for helpful discussions and for allowing us 
to quote his work with S. Tavener. The work described in this report is part of the 
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Kingdom Atomic Energy Authority. D.S.R. wishes to thank the SERC for partial 
support towards the costs of this research programme. 
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